
1. Weak convergence

Definition 1. Given a Hilbert space pH, x, yq, a sequence txku Ă H converges weakly to x P H and

we write

xk á x

if the following holds for every y P H

lim
kÑ`8

xxk, yy “ xx, yy.

Theorem 2 (Theorem 6.57). Every bounded sequence in a separable Hilbert space H contains s

subsequence which is weakly convergent to an element x P H.

Theorem 3 (Theorem 6.56). Let txku Ă H such that xk á x. Then,

}x} ď lim inf
kÑ8

}xk}.

2. Compactness

Theorem 4 (Rellich-Kondrachov compactness). Every bounded sequence in H1
0pΩq contains a sub-

sequence which is strongly convergent to an element x P L2pΩq.

See Evans’ PDE, pp 272 for the proof.

Proof in the n “ 1 case. We quickly check the proof in the simplest case Ω “ p0, 1q Ă R.

We claim that given ε ą 0 there exists a finite set of L2-functions F “ tF1, ¨ ¨ ¨ , Fmεu such that for

each u P H1
0p0, 1q with }u}H1 “ 1 there exists Fi P F such that }u´ Fi}L2 ď 10ε. By the theorem 5,

we have u˚ P C0, 1
2 r0, 1s such that }u´ u˚}H1 “ 0 and

|u˚pxq ´ u˚pyq| ď C1}u˚}H1 |x´ y|
1
2 “ C1|x´ y|

1
2 .

Since u˚ is continuous on r0, 1s, the Sobolev inequality yields supr0,1s |u
˚| ď C2.

We choose two large numbers N,M P N such that C1N´
1
2 ď 1

2ε and M´1 ď 1
2ε. Then, given k P N

with k ď N there exists some integer m such that |u˚p k
N q ´

m
M | ď M´1. Then, for x P r k´1

N , k
N s we

have

|u˚pxq ´
m
M
| ď |u˚pxq ´ u˚p

k
N
q| ` |u˚p

k
N
q ´

m
M
| ď C1|x´ kN´1|

1
2 ` M´1 ď ε.

1
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Therefore,
ˆ k

N

k´1
N

|u˚pxq ´
m
N
|2dx “

ˆ k
N

k´1
N

|u˚pxq ´
m
N
|2dx ď

ˆ k
N

k´1
N

ε2dx “
ε2

N
.

Now, we consider the set F which consists of the following L2 functions

Fpxq “ mkM´1, on each interval
k ´ 1

N
ă x ď

k
N
,

where k P N, k ď N mk P Z and |mk| ď pC2 ` 1qM.

Then, we can choose F P F such that |u˚p k
N q ´ Fp k

N q| ď M´1, and so

}u´ F}2L2 “ }u˚ ´ F}2L2 “

ˆ 1

0
|u˚pxq ´ Fpxq|2dx “

ÿ

ˆ k
N

k´1
N

|u˚pxq ´ Fpxq|2dx ď N ¨
1
N
¨ ε2.

This completes the proof of the claim.

Now, we consider a bounded sequence tuku Ă H1
0p0, 1q with }uk}H1 ď 1. Then, by the claim

there exists some L2 function F1 such that a subsequence tu1
ju satisfies }u1

k ´ F1}L2 ď 1
2 . Next, we

obtain a subsequence tu2
i u of the sequence tu1

ju such that }u2
k ´ F2}L2 ď 1

4 for some F2 P L2 with

}F1 ´ F2}L2 ď 1
2 . We iterate this process so that we obtain a Cauchy sequence tFku Ă L2, namely

Fk Ñ F̄ in L2. We observe that the subsequence tus
su
8
s“1 converges to F̄ strongly. �

Theorem 5 (Morrey’s inequality). Suppose u P W1,ppΩq for some p ą n. Then, there exists a function

u˚ P C0,γpΩq with γ “ 1´ n
p such that u “ u˚ almost everywhere and the following holds

}u˚}C0,γpΩq ď C}u}W1,ppΩq

for some constant C depending on p, n, and Ω.

Corollary 6. Every bounded sequence tuku Ă H1
0pΩq has a subsequence tukmu such that

ukm á ū in H1
0pΩq, ukm Ñ ū in L2pΩq,

for some ū P H1
0pΩq.

We will verify the corollary in the next class.
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3. Eigen decomposition I

Suppose that a function u P H1
0pΩq and a real number λ satisfy
ˆ
Ω

∇u ¨ ∇vdx “ λ

ˆ
Ω

uvdx,

for all v P H1
0pΩq. Then, we call u and λ as an Dirichlet eigenfunction and an eigenvalue for the

Laplacian.

Lemma 7. Suppose that pu1, λ1q and pu2, λ2q are pairs of eigenfunctions and eigenvalues. If λ1 ‰ λ2

then

xu1, u2yH1 “ 0.

Proof. Since u1, u2 P H1
0 , we have

λ1

ˆ
u1u2dx “

ˆ
∇u1 ¨ ∇u2dx “ λ2

ˆ
u1u2dx.

Thus, if λ1 ‰ λ2 then

0 “
ˆ

u1u2dx “
ˆ
∇u1 ¨ ∇u2dx.

�

Proposition 8. There exists a positive constant C depending on Ω such thatˆ
Ω

|∇u|2dx ě C
ˆ
Ω

u2dx,

for all u P H1
0pΩq.

Proof. The Sobolev inequality. �

The proposition above implies that

inf
}u}L2‰0,uPH1

´
Ω
|∇u|2dx´
Ω

u2dx
“ λ1 ą 0.

Theorem 9. There exists a function w1 P H1
0 with }w1}L2 ‰ 0 such that
´
Ω
|∇w1|

2dx´
Ω

w2
1dx

“ λ1
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Proof. There exists a sequence tu ju Ă H1
0 such that }u j}L2 “ 1 and lim

´
|∇u j|

2dx “ λ1. We observe

}u j}
2
H1 “

´
u2

jdx `
´
|∇u j|

2dx ď 1 ` λ1 ` ε ď C for large j, namely tu ju is a bounded sequence in

H1
0 . Hence, the corollary 6 guarantees that there exists a subsequence tu jmu such that

u jm á w1 in H1
0pΩq, u jm Ñ w1 in L2pΩq,

for some w1 P H1
0pΩq.

Since }u jm}L2 “ 1, we can observe }w1}L2 “ 1. Moreover, the theorem 3 shows

}w̄1}
2
H1 ď lim inf }u jm}

2
H1 “ lim inf

ˆ
|u jm |

2 ` |∇u jm |
2 “ 1` λ1.

This completes the proof. �

Lemma 10. The ratio minimizer w1 is an egienfunction and λ1 is the corresponding eigenvalue.

Proof. Without loss of generality, we assume }w1}L2 “ 1. Given v P H1
0 , we define a functional

Iptq “

´
Ω
|∇w1 ` t∇v|2dx´
Ω
|w1 ` tv|2dx

.

Since w1 ` tv P H1
0 , we have Iptq ě Ip0q. Differentiating log I yields

I1ptq
Iptq

“

´
Ω

2∇w1 ¨ ∇v` 2t|∇v|2dx´
Ω
|∇w1 ` t∇v|2dx

´

´
Ω

2w1v` 2tv2dx´
Ω
|w1 ` tv|2dx

.

Hence,

0 “
I1p0q
2Ip0q

“

´
Ω
∇w1 ¨ ∇vdx´
Ω
|∇w1|2dx

´

´
Ω

w1vdx´
Ω
|w1|2dx

“
1
λ1

ˆ
Ω

∇w1 ¨ ∇vdx´
ˆ
Ω

w1vdx.

�

Next, we define X2 “ spantw1u
K Ă H1

0pΩq, and then obtain a pair of eigenfunction w2 P X2 and

an eigenvalue λ2 ě λ1 satisfying
´
Ω
|∇w2|

2dx´
Ω

w2
2dx

“ λ2 “ inf
uPX2,}u}L2‰0

´
Ω
|∇u|2dx´
Ω

u2dx
.

In addition, w2 P X2 implies

0 “ xw1,w2yH1 “

ˆ
∇w1 ¨ ∇w2 ` w1w2dx “ pλ1 ` 1q

ˆ
w1w2dx.
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Since λ1 ą 0, we have xw1,w2yL2 “ 0.

By iterating this process, we can obtain a sequence of triples pw j, λ j, X jq such that X j`1 “ spantw1, ¨ ¨ ¨ ,w ju
K,

λ j`1 ě λ j, xwi,w jyH1 “ xwi,w jyL2 “ 0 if i ‰ j, and
´
Ω
|∇w j|

2dx´
Ω

w2
jdx

“ λ j “ inf
uPX j,}u}L2‰0

´
Ω
|∇u|2dx´
Ω

u2dx
.

Furthermore, w j are eigenfunctions and λ j are the corresponding eigenvalues.

Theorem 11.

lim
jÑ`8

λ j “ `8.

Proof. Suppose λ j ď M for some constant M. Without loss of generality, we assume }w1}L2 “ 1.

Then,

}w j}
2
H1 “

ˆ
|∇w j|

2 ` w2
jdx “

ˆ
pλ j ` 1qw2

jdx “ λ j ` 1 ď M ` 1.

Hence, tw ju is a bounded sequence in H1
0 . By the compactness theorem 4, there exists a subsequence

tw jmu which is strongly convergent in L2. However, xw jm ,w jnyL2 “ 0 for jm ‰ jn. Contradiction. �
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