1. Weak convergence

Definition 1. Given a Hilbert space (H, \langle, \rangle) , a sequence $\{x_k\} \subset H$ converges weakly to $x \in H$ and we write

$$x_k \rightharpoonup x$$

if the following holds for every $y \in H$

$$\lim_{k\to+\infty}\langle x_k,y\rangle=\langle x,y\rangle.$$

Theorem 2 (Theorem 6.57). Every bounded sequence in a separable Hilbert space H contains s subsequence which is weakly convergent to an element $x \in H$.

Theorem 3 (Theorem 6.56). Let $\{x_k\} \subset H$ such that $x_k \rightarrow x$. Then,

$$\|x\| \leq \liminf_{k \to \infty} \|x_k\|.$$

2. Compactness

Theorem 4 (Rellich-Kondrachov compactness). Every bounded sequence in $H_0^1(\Omega)$ contains a subsequence which is strongly convergent to an element $x \in L^2(\Omega)$.

See Evans' PDE, pp 272 for the proof.

Proof in the n = 1 *case.* We quickly check the proof in the simplest case $\Omega = (0, 1) \subset \mathbb{R}$.

We claim that given $\epsilon > 0$ there exists a finite set of L^2 -functions $\mathcal{F} = \{F_1, \dots, F_{m_{\epsilon}}\}$ such that for each $u \in H_0^1(0, 1)$ with $||u||_{H^1} = 1$ there exists $F_i \in \mathcal{F}$ such that $||u - F_i||_{L^2} \leq 10\epsilon$. By the theorem 5, we have $u^* \in C^{0,\frac{1}{2}}[0, 1]$ such that $||u - u^*||_{H^1} = 0$ and

$$|u^*(x) - u^*(y)| \le C_1 ||u^*||_{H^1} ||x - y||^{\frac{1}{2}} = C_1 ||x - y||^{\frac{1}{2}}.$$

Since u^* is continuous on [0, 1], the Sobolev inequality yields $\sup_{[0,1]} |u^*| \leq C_2$.

We choose two large numbers $N, M \in \mathbb{N}$ such that $C_1 N^{-\frac{1}{2}} \leq \frac{1}{2}\epsilon$ and $M^{-1} \leq \frac{1}{2}\epsilon$. Then, given $k \in \mathbb{N}$ with $k \leq N$ there exists some integer *m* such that $|u^*(\frac{k}{N}) - \frac{m}{M}| \leq M^{-1}$. Then, for $x \in [\frac{k-1}{N}, \frac{k}{N}]$ we have

$$|u^*(x) - \frac{m}{M}| \le |u^*(x) - u^*(\frac{k}{N})| + |u^*(\frac{k}{N}) - \frac{m}{M}| \le C_1 |x - kN^{-1}|^{\frac{1}{2}} + M^{-1} \le \epsilon.$$

Therefore,

$$\int_{\frac{k-1}{N}}^{\frac{k}{N}} |u^*(x) - \frac{m}{N}|^2 dx = \int_{\frac{k-1}{N}}^{\frac{k}{N}} |u^*(x) - \frac{m}{N}|^2 dx \leq \int_{\frac{k-1}{N}}^{\frac{k}{N}} \epsilon^2 dx = \frac{\epsilon^2}{N}.$$

Now, we consider the set \mathcal{F} which consists of the following L^2 functions

$$F(x) = m_k M^{-1}$$
, on each interval $\frac{k-1}{N} < x \le \frac{k}{N}$

where $k \in \mathbb{N}$, $k \leq N m_k \in \mathbb{Z}$ and $|m_k| \leq (C_2 + 1)M$.

Then, we can choose $F \in \mathcal{F}$ such that $|u^*(\frac{k}{N}) - F(\frac{k}{N})| \leq M^{-1}$, and so

$$\|u - F\|_{L^2}^2 = \|u^* - F\|_{L^2}^2 = \int_0^1 |u^*(x) - F(x)|^2 dx = \sum \int_{\frac{k-1}{N}}^{\frac{k}{N}} |u^*(x) - F(x)|^2 dx \le N \cdot \frac{1}{N} \cdot \epsilon^2.$$

This completes the proof of the claim.

Now, we consider a bounded sequence $\{u_k\} \subset H_0^1(0,1)$ with $||u_k||_{H^1} \leq 1$. Then, by the claim there exists some L^2 function F_1 such that a subsequence $\{u_j^1\}$ satisfies $||u_k^1 - F_1||_{L^2} \leq \frac{1}{2}$. Next, we obtain a subsequence $\{u_i^2\}$ of the sequence $\{u_j^1\}$ such that $||u_k^2 - F_2||_{L^2} \leq \frac{1}{4}$ for some $F^2 \in L^2$ with $||F_1 - F_2||_{L^2} \leq \frac{1}{2}$. We iterate this process so that we obtain a Cauchy sequence $\{F^k\} \subset L^2$, namely $F^k \to \overline{F}$ in L^2 . We observe that the subsequence $\{u_s^s\}_{s=1}^{\infty}$ converges to \overline{F} strongly. \Box

Theorem 5 (Morrey's inequality). Suppose $u \in W^{1,p}(\Omega)$ for some p > n. Then, there exists a function $u^* \in C^{0,\gamma}(\overline{\Omega})$ with $\gamma = 1 - \frac{n}{p}$ such that $u = u^*$ almost everywhere and the following holds

$$\|u^*\|_{C^{0,\gamma}}(\overline{\Omega})\leqslant C\|u\|_{W^{1,p}(\Omega)}$$

for some constant C depending on p, n, and Ω .

Corollary 6. Every bounded sequence $\{u_k\} \subset H^1_0(\Omega)$ has a subsequence $\{u_{k_m}\}$ such that

$$u_{k_m} \rightarrow \bar{u} \quad in \ H^1_0(\Omega), \qquad \qquad u_{k_m} \rightarrow \bar{u} \quad in \ L^2(\Omega),$$

for some $\bar{u} \in H_0^1(\Omega)$.

We will verify the corollary in the next class.

3. EIGEN DECOMPOSITION I

Suppose that a function $u \in H_0^1(\Omega)$ and a real number λ satisfy

$$\int_{\Omega} \nabla u \cdot \nabla v dx = \lambda \int_{\Omega} u v dx,$$

for all $v \in H_0^1(\Omega)$. Then, we call u and λ as an Dirichlet eigenfunction and an eigenvalue for the Laplacian.

Lemma 7. Suppose that (u_1, λ_1) and (u_2, λ_2) are pairs of eigenfunctions and eigenvalues. If $\lambda_1 \neq \lambda_2$ then

$$\langle u_1, u_2 \rangle_{H^1} = 0.$$

Proof. Since $u_1, u_2 \in H_0^1$, we have

$$\lambda_1 \int u_1 u_2 dx = \int \nabla u_1 \cdot \nabla u_2 dx = \lambda_2 \int u_1 u_2 dx.$$

Thus, if $\lambda_1 \neq \lambda_2$ then

$$0=\int u_1u_2dx=\int \nabla u_1\cdot \nabla u_2dx.$$

Proposition 8. There exists a positive constant C depending on Ω such that

$$\int_{\Omega} |\nabla u|^2 dx \ge C \int_{\Omega} u^2 dx,$$

for all $u \in H_0^1(\Omega)$.

Proof. The Sobolev inequality.

The proposition above implies that

$$\inf_{\|u\|_{L^2}\neq 0, u\in H^1} \frac{\int_{\Omega} |\nabla u|^2 dx}{\int_{\Omega} u^2 dx} = \lambda_1 > 0.$$

Theorem 9. There exists a function $w_1 \in H_0^1$ with $||w_1||_{L^2} \neq 0$ such that

$$\frac{\int_{\Omega} |\nabla w_1|^2 dx}{\int_{\Omega} w_1^2 dx} = \lambda_1$$

Proof. There exists a sequence $\{u_j\} \subset H_0^1$ such that $||u_j||_{L^2} = 1$ and $\lim \int |\nabla u_j|^2 dx = \lambda_1$. We observe $||u_j||_{H^1}^2 = \int u_j^2 dx + \int |\nabla u_j|^2 dx \le 1 + \lambda_1 + \epsilon \le C$ for large *j*, namely $\{u_j\}$ is a bounded sequence in H_0^1 . Hence, the corollary 6 guarantees that there exists a subsequence $\{u_{j_m}\}$ such that

$$u_{j_m} \rightarrow w_1 \quad \text{in } H^1_0(\Omega), \qquad \qquad u_{j_m} \rightarrow w_1 \quad \text{in } L^2(\Omega),$$

for some $w_1 \in H_0^1(\Omega)$.

Since $||u_{j_m}||_{L^2} = 1$, we can observe $||w_1||_{L^2} = 1$. Moreover, the theorem 3 shows

$$\|\bar{w}_1\|_{H^1}^2 \leq \liminf \|u_{j_m}\|_{H^1}^2 = \liminf \int |u_{j_m}|^2 + |\nabla u_{j_m}|^2 = 1 + \lambda_1$$

This completes the proof.

Lemma 10. The ratio minimizer w_1 is an egienfunction and λ_1 is the corresponding eigenvalue.

Proof. Without loss of generality, we assume $||w_1||_{L^2} = 1$. Given $v \in H_0^1$, we define a functional

$$I(t) = \frac{\int_{\Omega} |\nabla w_1 + t \nabla v|^2 dx}{\int_{\Omega} |w_1 + t v|^2 dx}$$

Since $w_1 + tv \in H_0^1$, we have $I(t) \ge I(0)$. Differentiating log *I* yields

$$\frac{I'(t)}{I(t)} = \frac{\int_{\Omega} 2\nabla w_1 \cdot \nabla v + 2t |\nabla v|^2 dx}{\int_{\Omega} |\nabla w_1 + t \nabla v|^2 dx} - \frac{\int_{\Omega} 2w_1 v + 2t v^2 dx}{\int_{\Omega} |w_1 + t v|^2 dx}.$$

Hence,

$$0 = \frac{I'(0)}{2I(0)} = \frac{\int_{\Omega} \nabla w_1 \cdot \nabla v dx}{\int_{\Omega} |\nabla w_1|^2 dx} - \frac{\int_{\Omega} w_1 v dx}{\int_{\Omega} |w_1|^2 dx} = \frac{1}{\lambda_1} \int_{\Omega} \nabla w_1 \cdot \nabla v dx - \int_{\Omega} w_1 v dx.$$

Next, we define $X_2 = \operatorname{span}\{w_1\}^{\perp} \subset H_0^1(\Omega)$, and then obtain a pair of eigenfunction $w_2 \in X_2$ and an eigenvalue $\lambda_2 \ge \lambda_1$ satisfying

$$\frac{\int_{\Omega} |\nabla w_2|^2 dx}{\int_{\Omega} w_2^2 dx} = \lambda_2 = \inf_{u \in X_2, \|u\|_{L^2} \neq 0} \frac{\int_{\Omega} |\nabla u|^2 dx}{\int_{\Omega} u^2 dx}.$$

In addition, $w_2 \in X_2$ implies

$$0 = \langle w_1, w_2 \rangle_{H^1} = \int \nabla w_1 \cdot \nabla w_2 + w_1 w_2 dx = (\lambda_1 + 1) \int w_1 w_2 dx.$$

-	_
_	

Since $\lambda_1 > 0$, we have $\langle w_1, w_2 \rangle_{L^2} = 0$.

By iterating this process, we can obtain a sequence of triples (w_j, λ_j, X_j) such that $X_{j+1} = \text{span}\{w_1, \dots, w_j\}^{\perp}$, $\lambda_{j+1} \ge \lambda_j, \langle w_i, w_j \rangle_{H^1} = \langle w_i, w_j \rangle_{L^2} = 0$ if $i \ne j$, and

$$\frac{\int_{\Omega} |\nabla w_j|^2 dx}{\int_{\Omega} w_j^2 dx} = \lambda_j = \inf_{u \in X_j, \|u\|_{L^2} \neq 0} \frac{\int_{\Omega} |\nabla u|^2 dx}{\int_{\Omega} u^2 dx}.$$

Furthermore, w_j are eigenfunctions and λ_j are the corresponding eigenvalues.

Theorem 11.

$$\lim_{j \to +\infty} \lambda_j = +\infty$$

Proof. Suppose $\lambda_j \leq M$ for some constant M. Without loss of generality, we assume $||w_1||_{L^2} = 1$. Then,

$$\|w_j\|_{H^1}^2 = \int |\nabla w_j|^2 + w_j^2 dx = \int (\lambda_j + 1) w_j^2 dx = \lambda_j + 1 \le M + 1.$$

Hence, $\{w_j\}$ is a bounded sequence in H_0^1 . By the compactness theorem 4, there exists a subsequence $\{w_{j_m}\}$ which is strongly convergent in L^2 . However, $\langle w_{j_m}, w_{j_n} \rangle_{L^2} = 0$ for $j_m \neq j_n$. Contradiction. \Box